Surface Reconstruction from Unorganized Points Using Self-Organizing Neural Networks
نویسنده
چکیده
We introduce a novel technique for surface reconstruction from unorganized points by applying Kohonen’s self-organizing map. The topology of the surface is predetermined, and a neural network learning algorithm is carried out to obtain correct 3D coordinates at each vertex of the surface. Edge swap and multiresolution learning are proposed to make the algorithm more effective and more efficient. The whole algorithm is very simple to implement. Experimental results have shown our techniques are successful.
منابع مشابه
Local update of B-spline surfaces by Kohonen neural network
This paper is devoted to the problem of creating and updating a B-spline surface based on a set of scattered data, i.e. totally unorganized points locally distributed over a 3D area. The crucial point of the problem is the parametrization of the given points, where earlier approaches introduced a base surface and the spatial points were mapped onto this surface to gain parameter values. The bas...
متن کاملSelf-Organizing Topology Evolution of Turing Neural Networks
We present Turing's neural-network-like structures (unorganized machines) and compare them to Kau man's random boolean networks (RBN). Some characteristics of attractors are brie y presented. We then apply a self-organizing topology evolving algorithm to Turing's networks and show that the network evolves towards an average connectivity of KC = 2 for large systems (N !1).
متن کاملGait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map
The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...
متن کاملGait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map
The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...
متن کاملGait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map
The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...
متن کامل